The Rational Zero Test

Do all work on a separate sheet of paper!

In Exercises 1 – 4, use the Rational Zero Test to list all possible rational zeros of \(f \). Verify that the zeros of \(f \) shown on the graph are contained in the list.

1. \(f(x) = x^3 + 3x^2 - x - 3 \)
2. \(f(x) = x^3 - 4x^2 - 4x + 16 \)
3. \(f(x) = 2x^4 - 17x^3 + 35x^2 + 9x - 45 \)
4. \(f(x) = 4x^5 - 8x^4 - 5x^3 + 10x^2 + x - 2 \)

In Exercises 5 – 12, (a) list the possible rational zeros of \(f \), (b) use a graphing utility to graph \(f \) so that some of the possible zeros in part (a) can be disregarded, and (c) determine all the real zeros of \(f \).

5. \(f(x) = x^3 + x^2 - 4x - 4 \)
6. \(f(x) = -3x^3 + 20x^2 - 36x + 16 \)
7. \(f(x) = -4x^3 + 15x^2 - 8x - 3 \)

8. \(f(x) = 4x^3 - 12x^2 - x + 15 \)
9. \(f(x) = -2x^4 + 13x^3 - 21x^2 + 2x + 8 \)
10. \(f(x) = 4x^4 - 17x^2 + 4 \)
11. \(f(x) = 6x^3 - x^2 - 13x + 8 \)
12. \(f(x) = 4x^3 + 7x^2 - 11x - 18 \)

13. Find the equation of the quadratic function in standard form and find the vertex of the graph. \(f(x) = 40x + 4 + 4x^2 \)

14. Sketch the graph of the function. Identify the vertex. \(f(x) = (x - 4)^2 + 3 \)

15. Find the equation of a quadratic function with the vertex \(\left(0, \frac{1}{2}\right) \), that passes through the point \(\left(-2, \frac{25}{2}\right) \) and opens upward.

16. Write the standard form of the equation of the parabola graphed below.
17. The demand for saws depends on the price per saw. A manufacturer determines that the number of saws he can sell is
\[d = -2p^2 + 288p - 160 \]
where \(p \) is the price per saw in dollars. At what price will the demand for saws be at a maximum?

[A] $72
[B] $40
[C] $144
[D] $20

18. Macro Manufacturing estimates that its profit \(P \) in hundreds of dollars is
\[P = -3x^2 + 12x + 2 \]
where \(x \) is the number of units produced in thousands. How many units must be produced to obtain the maximum profit?

[A] 20 units
[B] 200 units
[C] 2 units
[D] 2000 units

19. A farmer has 932 meters of fencing available to enclose a rectangular portion of his land. One side of the rectangle being fenced lies along a river, so only three sides require fencing.

(a) Express the area \(A \) of the rectangle as a function of \(x \), where \(x \) is the length of the side parallel to the river.

(b) For what value of \(x \) is the area largest?

20. The height of an arrow shot into the air is
\[h(t) = -16t^2 + 38.4t \]
where \(h(t) \) is the height in feet of the arrow above the ground \(t \) seconds after it is released. Find the maximum height the arrow reaches by graphing the function.